Attualità

Google: con la sua AI punta a colmare il vuoto di data scientist

Attraverso la suite di prodotti di machine learning AutoML, e una serie di ‘mattoni base’ di ML pre-addestrati, il colosso di Mountain View vuol rendere l’intelligenza artificiale facilmente accessibile, e utile, anche per sviluppatori e imprese privi di particolare know-how in materia

Pubblicato il 30 Lug 2018

La sproporzione tra sviluppatori e data scientist

L’era dell’apprendimento automatico è già in pieno svolgimento, e le imprese lo usano per stare un passo avanti rispetto alla concorrenza: lo indica una survey del MIT, svolta nel 2017 in collaborazione con Google Cloud. Paolo Fabbri, Cloud Customer Engineer di Google, cita qualche dato del sondaggio in una sessione tematica, intitolata “Create business advantage with Google Cloud Data Analytics & AI”, al recente Google Cloud Summit di Milano. La survey interpella 375 responsabili IT e dirigenti business, appartenenti a una varietà di organizzazioni nel mondo, sull’uso delle tecnologie di machine learning (ML): per il 46% degli IT leader che le usano, il vantaggio competitivo è classificato tra i principali obiettivi dei progetti di machine learning. Inoltre, il 50% di coloro che ha implementato il ML è in grado di quantificare il ROI (return on investment). Tra i risultati e i benefici, le decisioni ‘data-driven’ diventano più del doppio; si possono prendere decisioni fino a cinque volte più rapidamente, e la fase di esecuzione diventa tre volte più veloce.

Foto di Paolo Fabbri
Paolo Fabbri, Cloud Customer Engineer di Google

Data science, forte mancanza di competenze

Chi usa l’intelligenza artificiale (AI) è più innovatore e ottiene un valore che si traduce nella capacità di arrivare prima sul mercato rispetto alla concorrenza: ma, aggiunge Fabbri, “oltre a tecnologia e processi, il terzo ingrediente per vincere sono le persone, perché i dati da soli non bastano, ed oggi esiste un forte gap conoscitivo nelle tecnologie”. I dati denunciano una carenza di competenze nella cosiddetta scienza dei dati: nel mondo si stimano infatti circa 21 milioni di sviluppatori, ma soltanto meno di un milione di ‘data scientists’, e solo qualche migliaio di ricercatori nelle discipline di deep learning.

Davvero pochi utenti, quindi, si possono oggi considerare in grado di creare un modello di ML personalizzato: ed ecco perché, in questa fase, l’obiettivo di Google è ‘democratizzare’ la AI, rendendola facilmente accessibile alle diverse tipologie di utilizzatori, quindi veloce e facile da usare sia per gli sviluppatori, sia per le imprese.

La sproporzione tra sviluppatori e data scientist

Di esempi ce ne sono già: il grande retailer online di drogheria Ocado, nel Regno Unito, sta migliorando l’efficienza operativa e il servizio clienti usando proprio le funzionalità di machine learning della Google Cloud Platform. Ora Ocado riesce a rispondere alle email urgenti dei clienti quattro volte più velocemente rispetto al passato, ha incrementato l’efficienza del contact center del 7% e la velocità di analisi dei dati dell’80%.

Da menzionare anche Rolls-Royce, che ha un accordo con Google per lo sviluppo di sistemi di ‘intelligent awareness’ in grado di rendere i vascelli esistenti più sicuri e autonomi: in sostanza, Rolls-Royce, usando il Cloud Machine Learning Engine di Google, è in grado di addestrare ulteriormente il proprio sistema di classificazione degli oggetti ‘AI-based’, per identificare e tracciare gli oggetti che un’imbarcazione può incontrare in mare lungo il proprio percorso.

“Scegliere Google come partner nella AI presenta molti vantaggi per un’organizzazione – spiega Fabbri – non solo scalabilità e massime prestazioni per i workload di AI, ma possibilità di accedere ai numerosi ‘AI building blocks’ (Cloud Translation, Cloud Vision, Cloud Natural Language, Cloud Speech, Cloud Video Intelligence), già pre-addestrati per risolvere determinate necessità di business, nonché alla suite di prodotti di machine learning AutoML, che abilita gli sviluppatori con limitate competenze di ML a eseguire il training di modelli di appredimento automatico di alta qualità.”

Valuta la qualità di questo articolo

La tua opinione è importante per noi!

Speciale Digital360Awards e CIOsumm.it

Tutti
Update
Keynote
Round table
Video
Digital360Awards e CIOsumm.it, i momenti salienti
Approfondimenti
La sinergia tra CIO e CISO trasforma la cybersecurity in un obiettivo di business strategico
Approfondimenti 
Etica dell’innovazione tecnologica per i CIO: prima chiedersi perché. Poi definire cosa e come
Eventi
Digital360 Awards e CIOsumm.IT, ecco i progetti vincitori
Tavola rotonda
Evoluzione del CIO: da centro di costo a motore strategico del business
Tavola rotonda
Business Process Augmentation: dall’RPA alla GenAI… il dato e tratto
Approfondimenti
Sistemi digitali potenziati: l’intelligenza dei chatbot è nelle mani dei CIO
Tavola rotonda
Intelligenza collaborativa e AI: sfide e opportunità per i CIO nell’era dello Human to Machine (H2M) 
Approfondimenti
Open Source: collaborazione e innovazione nel caos apparente del software libero 
Metodologie
BANI: che cos’è e come l’AI può aiutare i CIO a gestire la felicità (e l’infelicità) dei talenti
Prospettive
AI in un mondo complesso. Tra ordine e disordine, le aziende iniziano a capire la giusta via
Approfondimenti
Intelligenza Umana vs Intelligenza Artificiale insieme. Non invece
Eventi
Digital360 Awards e CIOsumm.IT, al via l’evento conclusivo
Video
Digital360Awards e CIOsumm.it, i momenti salienti
Approfondimenti
La sinergia tra CIO e CISO trasforma la cybersecurity in un obiettivo di business strategico
Approfondimenti 
Etica dell’innovazione tecnologica per i CIO: prima chiedersi perché. Poi definire cosa e come
Eventi
Digital360 Awards e CIOsumm.IT, ecco i progetti vincitori
Tavola rotonda
Evoluzione del CIO: da centro di costo a motore strategico del business
Tavola rotonda
Business Process Augmentation: dall’RPA alla GenAI… il dato e tratto
Approfondimenti
Sistemi digitali potenziati: l’intelligenza dei chatbot è nelle mani dei CIO
Tavola rotonda
Intelligenza collaborativa e AI: sfide e opportunità per i CIO nell’era dello Human to Machine (H2M) 
Approfondimenti
Open Source: collaborazione e innovazione nel caos apparente del software libero 
Metodologie
BANI: che cos’è e come l’AI può aiutare i CIO a gestire la felicità (e l’infelicità) dei talenti
Prospettive
AI in un mondo complesso. Tra ordine e disordine, le aziende iniziano a capire la giusta via
Approfondimenti
Intelligenza Umana vs Intelligenza Artificiale insieme. Non invece
Eventi
Digital360 Awards e CIOsumm.IT, al via l’evento conclusivo

Articoli correlati

Articolo 1 di 4