I dati da soli non bastano: per comunicare al meglio le evidenze ricavate dalla data analysis occorre anche un coinvolgimento emotivo. Ecco perché è nato il data storytelling, che abbina la forza delle storie alla concretezza dei dati per invitare all’azione.
Cos’è il data storytelling
Data storytelling significa, letteralmente, “raccontare una storia attraverso i dati”. Ovvero, utilizzare gli insight ottenuti dall’analisi dei dati per comunicare al meglio un messaggio, quindi ispirare una o più azioni ai destinatari.
Infatti, spesso non bastano numeri e grafici per comunicare efficacemente le informazioni: i dati contenuti nelle dashboard e nei fogli di calcolo fotografano una situazione ma sempre non ne spiegano le relazioni o i rapporti causa-effetto. Serve quindi una narrazione, un frame di interpretazione che colleghi passato, presente e futuro a beneficio di tutti gli stakeholder, aziendali e territoriali.
Il data storytelling è un metodo che contribuisce a formare un orizzonte di senso, attraverso storie emotivamente coinvolgenti e realizzate nella lingua e nel formato adatti al pubblico che le ascolta.
Le scienze cognitive sono infatti ormai concordi nell’affermare che conosciamo attraverso le emozioni, e che l’apprendimento dipende non solo dal contenuto razionale del messaggio, ma anche e soprattutto dall’emozione associata al contenuto e vissuta al momento della sua trasmissione. E le storie sono tra i più semplici e antichi vettori di emozioni tra gli esseri umani.
Per formare e/o modificare un orizzonte di senso, però, occorrono elementi condivisi tra emittenti e destinatari: un sottotesto “implicito” che esprime le coordinate culturali entro cui i dati, tutti i dati, si inseriscono.
La relazione con i big data
Il data storytelling non nasce con i big data: la comunicazione si è spesso servita della forza dei dati per dare concretezza alle storie. Tuttavia, è solo con l’analisi dei big data, e quindi con lo sviluppo degli algoritmi di Intelligenza Artificiale, che il data storytelling si è evoluto in quantità dei dati e qualità degli insight a disposizione.
Questo ha determinato, da una parte, la necessità di rendere immediatamente comunicabili i risultati delle dashboard, dall’altra, una più attenta riflessione su quali siano i dati che usiamo nelle analisi e perché.
Un dato infatti non è solo mai “dato”, ma sempre “costruito” per contribuire a rispondere alle domande del modello di analisi. Ogni scelta di implementazione di un modello di ricerca, dalle tempistiche agli strumenti utilizzati, non è mai neutra, ma funzionale all’obiettivo dell’analisi.
Vale per i dati quello che vale per le storie: bisognerebbe sempre chiedersi qual è la fonte, a quale scopo sono stati raccolti, a beneficio di chi, cosa (o chi) è rimasto fuori dal modello.
In particolare, l’utilizzo dei big data e dell’intelligenza artificiale con l’apprendimento automatico, sia supervisionato che non supervisionato, ha fatto emergere il problema dei bias cognitivi: le distorsioni di interpretazione della realtà causate da pregiudizi, da episodi della propria esperienza, dalla poca rappresentatività del campione scelto.
Data storytelling: la ricerca di pattern nei dati
Gli algoritmi di apprendimento automatico, o machine learning, vengono usati per trovare nei database i pattern, o schemi ricorrenti, da cui descrivere i processi in corso o predire gli scenari futuri.
In particolare, la ricerca dei pattern è proprio del data mining, una parte del Knowledge Discovery Database: il data mining (lett: estrazione di dati), pre-elabora i dati da fonti anche eterogenee e ne trova le correlazioni. Utilizza algoritmi di apprendimento supervisionato, ovvero dotato di “etichette” già stabilite per ogni classe di dati, oppure non supervisionato, con le categorie che emergono dall’analisi del dataset.
È il caso del clustering, che individua tra i dati gruppi con caratteristiche simili (i cluster). Tra le diverse tecniche di clustering, le più comuni sono: l’analisi dei componenti principali; il clustering k-means che aggrega i dati in gruppi simili; l’analisi gerarchica con diagrammi ad albero, che può essere agglomerativa, dai nodi singoli ad un unico cluster, o divisiva, dal cluster unico a piccoli cluster singoli.
Tra gli algoritmi di apprendimento supervisionato, tra i più diffusi ci sono gli algoritmi di classificazione, che distinguono i dati sulla base delle classi già individuate. Sono algoritmi di classificazione: l’albero decisionale, la backpropagation nelle reti neurali artificiali, gli algoritmi genetici, i “vettori di supporto”, i lazy learners, gli algoritmi a logica fuzzy, le reti bayesiane. Un’altra tecnica è l’estrazione di pattern sequenziali, cioè di sottosequenze che si ripetono spesso nel database.
Una volta individuati e pre-elaborati, dai pattern di dati vengono ricavate informazioni utili sulle dinamiche in corso o sugli scenari più o meno probabili in futuro. Per comunicare queste informazioni, un primo passo è la data visualization.
L’utilizzo della data visualization
La data visualization o visualizzazione di dati più antica è la mappa. Le rappresentazioni sulle mappe cambiano a seconda del fine a cui sono destinate: si parla quindi di diversi livelli di astrazione.
Ad esempio, una mappa della metropolitana potrà essere utile ai viaggiatori, e quindi riportare tutte le fermate e gli snodi delle diverse linee, oppure ai manutentori, e quindi rappresentare le distanze reali in scala tra una stazione e l’altra.
I dati possono essere visualizzati sotto forma di tabelle, diagrammi di Gantt, grafici (a barre, a torta, a isolinee, a proiettile, istogramma), infografiche, mappe di geolocalizzazione.
L’analisi dei big data ha aperto all’utilizzo delle dashboard, i pannelli di controllo che riassumono le visualizzazioni principali tratte dall’elaborazione. Gli insight vengono quindi tradotti in istantanee a colpo d’occhio, utili a ricevere risposte tempestive ma spesso insufficienti a capire e ricostruire il contesto da cui quei dati sono stati estratti.
Ecco che viene in aiuto il data storytelling con la narrazione verbale o scritta che comunica il contesto degli insight e ispira le azioni raccomandate a chi legge o ascolta.
Un esempio di data storytelling è proposto dall’ufficio ONU dedicato al contrasto di droghe e criminalità, lo United Nation Office of Drugs and Crime, per comunicare la propria strategia 2021-2025 contro le droghe sintetiche: la crescita del mercato e le azioni di contrasto vengono visualizzate attraverso una precisa scansione di grafici e immagini che le raccontano in modo interattivo.
Un altro esempio è l’approfondimento realizzato da The Pudding sulle domande rivolte a “Dear Abby”, la rubrica di consigli più longeva degli USA: un corpus di 20.000 lettere che diventa un’indagine di costume sulle preoccupazioni degli Stati Uniti dagli anni Ottanta al 2017. In fondo, un’appendice metodologica che spiega come e perché sono stati raccolti, usati ed elaborati i dati. Il data storytelling accurato non può prescindere dalla trasparenza.